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Abstract

In many multi-agent tasks, agents face uncertainty about the environment, the out-
comes of their actions, and the behaviors of other agents. Dec-POMDPs offer a
powerful modeling framework for sequential, cooperative,multiagent tasks under
uncertainty. Solution techniques for infinite-horizon Dec-POMDPs have assumed
prior knowledge of the model and have required centralized solvers. We propose
a method forlearningDec-POMDP solutions in a distributed fashion. We iden-
tify the issue ofpolicy synchronizationthat distributed learners face and propose
incorporating rewards into their learned model representations to ameliorate it.
Most importantly, we show that even if rewards are not visible to agents during
policy execution, exploiting the information contained inreward signals during
learning is still beneficial.

1 Introduction

In many multi-agent tasks, agents face uncertainty about the environment, the outcomes of their
actions, and the behaviors of other agents. Dec-POMDPs offer a powerful modeling framework for
sequential, cooperative, multiagent tasks under uncertainty.

State-of-the art infinite-horizon Dec-POMDP solution techniques such as Pajarinen and Petonen’s
PERI [1] and Amato and Zilberstein’s Goal–directed approach [2] rely on knowledge of model
parameters and centralized solvers; however, in some scenarios such knowledge may not be avail-
able and using centralized solvers may be unfeasible. The vast majority of Dec-POMDP solution
techniques (for both finite and infinite horizons) have either relied on such prior knowledge of the
environment or have utilized centralized solvers.

Recently, some algorithms have been proposed for distributed learning policies for finite-horizon
Dec-POMDPs. Zhang and Lesser [3] proposed a scalable distributed, model-free method for a
special class of Dec-POMDP where agents are organized in a network, and Banerjee and Kraemer
[4] proposed a distributed, model-free method for the general (non-networked) case of finite-horizon
Dec-POMDPs; however, both of these methods rely on an learning a Q-value function that grows
exponentially in the horizon length. Thus, such methods cannot be applied to learning in infinite-
horizon Dec-POMDPs.

Learning algorithms for infinite-horizon POMDPs (which areessentally single-agent Dec-
POMDPs) have long existed. In this work, we leverage the Utile Distinction Memory algorithm
(UDM) [5], which was developed to solve infinite-horizon POMDPs, to solve infinite-horizon Dec-
POMDPs. UDM is a model-based learning algorithm, in that a UDM agent attempts tolearn its own
POMDP model and find the best policy for that model.

Our work with this algorithm (which we call ”UDM-Alt”), has revealed an interesting issue that we
believe can arise not only in UDM-Alt but other such distributed algorithms for learning infinite Dec-

1
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POMDP policies. We discuss the difficulty distributed infinite-horizon learners have with what we
call policy synchronizationin Section 6.1, and discuss how reward information can be incorporated
to ameliorate this problem.

The rewards agents receive from the environment can carry a significant amount of information. To
our knowledge, previously Dec-POMDP policy representations have not exploited this; however, the
argument can be made that rewards are more of a conceptual feature, existing to define the problem
and provide an evaluation criteria for policies. However, rewards must be made available while the
agents are learning otherwise the policy they learn is meaningless. With this in mind, we create a
variant of UDM-Alt that only requires rewards during the learning phase (i.e. it requires no rewards
during policy execution), and we show that this algorithm iscapable of finding better policies that
UDM-Alt (which incorporates no reward information).

2 Decentralized POMDPs

The Decentralized POMDP (Dec-POMDP) formalism extends thePOMDP formalism to accommo-
date multiple agents. We can define a Dec-POMDP as a tuple〈n, S,A, P,R,Ω, O〉, where:

• n is the number of agents playing the game.

• S is a finite set of (unobservable) environment states.

• A = ×iAi is a set of joint actions, whereAi is the set of individual actions that agenti can
perform.

• P (s′|s,~a) gives the probability of transitioning to states′ ∈ S when joint action~a ∈ A is
taken in states ∈ S.

• R(s,~a) gives the immediate reward the agents receive upon executing action~a ∈ A in state
s ∈ S.

• Ω = ×iΩi is the set of joint observations, whereΩi is the finite set of individual observa-
tions that agenti can receive from the environment.

• P (~ω|s′,~a) gives the probability of the agents jointly observing~ω ∈ Ω if the current state is
s′ ∈ S and the previous joint action was~a ∈ A.

In Dec-POMDPs, it is generally assumed that agents cannot communicate their observations and
actions to each other. These constraints are often present in real world scenarios, where communi-
cation may be expensive or unreliable. Consider, for instance, a scenario in which a team of robots
must coordinate to search a disaster area for survivors. In such a task, robots may need to spread
out to efficiently cover the area and also may need to travel deep underneath rubble, both of which
could interfere with wireless communication.

Assuming agents cannot communicate observations and actions, each agent must choose actions
based only upon his own actions and observations; however, since the transition, reward, and ob-
servation functions depend onjoint actions, the quality of each agent’s policy is dependent on the
policies played by all agents or thejoint policy. The goal of the Dec-POMDP problem, then, is to
find the joint policy that maximizes the expected reward received by the agents. The problem of
finding this optimal joint policy has been proven to be NEXP-complete [6].

3 Alternating Best-Response for Dec-POMDPs

In [7], Nair et. al present the JESP algorithm for solving finite-horizon Dec-POMDPs in which
a centralized solver, with complete knowledge of the Dec-POMDP model, finds a joint policy by
alternatelycomputingeach agent’s best response policy to the policies of the other agents. More
recently, Kraemer and Banerjee [4] proposed Q-Alt, an alternating method for solving finite-horizon
Dec-POMDPs that requires no knowledge of the underlying Dec-POMDP model.

Algorithm 1 gives an abstract definition of these alternating best-response solution methods.π repre-
sents the current joint policy, with the policy for a given agenti denoted asπi. The variablefinished
represents some termination condition. In JESP,finished is true whenπ stops changing, while in
Q-Alt finished is true after a set number of alternations. The functionfindBestResponse(i, π)

2
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Algorithm 1 SOLVEALTERNATELY

1: π ← initializePolicies()
2: while notfinished do
3: for i = 1 to n do
4: πi ← findBestResponse(i, π)
5: end for
6: end while

returns agenti’s best response policy to the current policies of the other agents, which iscomputed
in JESP butlearnedin Q-Alt.

In Q-Alt, findBestResponse(i, π) involves learning Q-Values [8] of the formQ(ht, a|π \ πi)
whereht is an individual action-observation history of lengtht anda ∈ Ai. It is not assumed,
however, that agenti knowsπ \ πi, so these Q-Values can be written asQ(ht, a). Essentially, agent
i is treating the other agents as part of the environment as it is learning a policy for a finite-horizon
POMDP (i.e. a single-agent Dec-POMDP) with stochastic rewards. Unfortunately, for a given agent
i, there can beO(|Ai|

t|Ωi|
t) individual action-observation histories, and, therefore, learning these

Q-Values is intractable for infinite-horizon Dec-POMDPs.

Thus, in order to use this alternate learning approach for aninfinite-horizon Dec-POMDP, we re-
quire a method for learning policies for infinite-horizon POMDPs. In this work, we propose a new
algorithm based upon 1 in which agents use McCallum’s UDM algorithm [5] for learning policies
(i.e. UDM is used forfindBestResponse(i, π)). We refer to the resulting algorithm as UDM-Alt.

4 Utile Distinction Memory for Dec-POMDPs

In [9], Chrisman proposed a method for learning POMDP policies in which a learning agent con-
structs its own model and then uses replicated Q-Learning tofind a policy. The agent’s local model
is essentially a POMDP model, having a set oflocal statesS, a transition model over the classes
P (s′|s, a), and an observation modelP (ω|s′, a), wheres, s′ ∈ S are local states,ω ∈ Ω is an
observation, anda ∈ A is an action. Note that local states are not necessarily the same as the un-
derlying Dec-POMDP model states. A given local states may be a probability distribution over
the true model states as well as the set of policies the other agent could be following. Also, note
that in Chrisman’s work, the observation distribution was based only upon the state (i.e. the action
was irrelevant); however, in order to address problems withinformation-gathering actions such as
DecTiger, we include the previous action in the observationmodel.

As the agent interacts with the environment, it maintains abelief distributionbt ∈ ∆S, wherebt(s)
indicates the agent’s belief that it is in local states at stept. During policy execution where the
agent only has the series of actions it has executed and observations it has seen up to a given step
t, the agent’s belief is given by theforward probabilityα from the Baum-Welch forward-backward
procedure [10].

αt(s
′) = P (ω2, . . . , ωt, st = s′|a1, . . . , at−1)

= z · P (ωt|s
′, at−1)

∑

s∈S αt−1(s)P (s′|s, at−1) (1)

wherez is a normalizing factor. However, once an agent has executedup toT steps forT > t it is
able to improvebt(s) by considering how well its experience aftert is explained byst = s. This
probability is known as thebackwardprobabilityβt in Baum-Welch and is given by

βt(s) = P (ωt+1, . . . , . . . ωT |st = s, at+1, . . . , aT−1)

= z ·
∑

s′∈S βt+1(s
′)P (ωt+1|s

′, at)P (s′|s, at). (2)

Along with the model parameters, the agent also maintains a Q-Value functionQ : S × A 7→ R,
whereQ(s, a) gives an estimation of the expected reward attained by executing actiona in states. At
a time stept, the agent selects which action to execute according toargmaxa∈A

∑

s∈S bt(s)Q(s, a).

3
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Since, the agent has only a probability distribution over states, it cannot always identify a single
Q(s, a) to update at a given step as is possible in Q-Learning for MDPs. Instead, it must update
Q(s, a) for all s ∈ S since it may have had a small probability of being in any state. After executing
an action at stept and receiving rewardr, the agent maintains its Q-Values using

∀s ∈ S,Q(s, at) = Q(s, at) + δbt(s)

[

r + γmax
a′

∑

s′∈S

bt+1(s
′)Q(s′, a′)

]

(3)

whereδ is the learning rate, andγ is a discount factor.

Chrisman’s algorithm consists of a series of trials with each trial having two main stages. In the first
stage, the agent interacts with the environment forT steps, updating its Q-Values as it goes along. In
the second main stage of a trial, the agent updates its internal model. In this second stage, the agent
first updates its model parameters using the Baum-Welch algorithm. For each stept in the history,
there is an associated actionat, observationωt+1, and rewardrt+1. At the end of a trial, an agent
updates its model using the following. Let

ξt(s, s
′) = zξt · αt(s)P (s′|s, at)P (ωt+1|s

′, at)βt+1(s
′) (4)

wherezξt is a normalizing constant that ensures
∑

s,s′ ξt(s, s
′) = 1.

∀a ∈ A, ∀s, s′ ∈ S, P (s′|s, a) = zP (s, a) ·

T
∑

t=1

I(at = a)ξt(s, s
′) (5)

∀a ∈ A, ∀ω ∈ Ω, ∀s′ ∈ S, P (ω|s′, a) = zO(s
′, a)

T
∑

t=1

I(at = a, ωt+1 = ω)
∑

s

ξt(s, s
′) (6)

whereI(event) returns 1 ifevent occurred and 0 if it did not occur and wherezP (s, a) andzO(s′, a)
are normalizing constants which ensure that

∑

s′∈S P (s′|s, a) = 1 and
∑

ω∈Ω
P (ω|s′, a) = 1,

respectively. Baum-Welch will continue to iteratively update the model parameters until the model
converges.

The agent’s local states may alias many of the states of the true underlying model, and it may be
the case that the agent needs to execute different actions inthose different underlying states. To ad-
dress this, after Baum-Welch has completed the agent attempts to make newperceptual distinctions.
While Chrisman’s perceptual distinction criterion was based solely upon expected frequencies in
model of transitions and observations, in [5], McCallum instead considered the utility of making
a perceptual distinction as the criterion. This method is known as the ”Utile Distinction Memory”
(UDM) approach, and it differs from Chrisman’s only in the perceptual distinction criterion.

5 Informed Policy

Note that step 1 of Algorithm 1 requires thatπ be initialized. Since the agents learn in an alternating
fashion, all agents that have not yet learned a policy will need an initial policy to play. As noted
in [4] initializing these policies in aninformedmanner can produce better results. The informed
policy presented used in those works is incompatible with infinite-horizon Dec-POMDPs, so we
present a way to repurpose UDM for learning an informed initial policy for infinite-horizon Dec-
POMDPs. We make the assumption that agents can share their exploration mechanisms beforehand,
as was done in [4], and therefore, while each agent maintainsits own model while learning the
initial policy, every agent learns the same model. Rather than alternate learning, the agents update
and follow their policies concurrently.

First, each agent creates a UDM model withS = s1, s2, . . . sk wherek = |A|, i.e. one state for each
possiblejoint action. Each agent also creates a states∅ which is unreachable from every state, i.e.
∀a ∈ A, ∀s ∈ S, P (s∅|s, a) = 0. b0 is initialized such thats∅ is always the start state. Letsa denote
the state associated with actiona ∈ A. For all joint actionsa ∈ A and for all statess, s′ ∈ S, if
s′ = sa, thenP (s′|s, a) = 1, otherwiseP (s′|s, a) = 0. In other words, the only way to reach state
sa is via joint actiona. Conceptually, each state in the model, including those that may be added
by UDM, represents a joint action-only history; however, anaction-only history of lengtht′, ht′ can
still bring our agents to a states which representsht, t ≥ t′ so long as the lastt′ steps ofh′

t match

4
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the lastt′ steps ofht. The benefit in using UDM as opposed to the method proposed in [4] is that we
do not have to learn directly a Q-Value for each action-only history ht and actiona (which would
be intractable for larget) but rather we can learn a Q-Values only for portions of history that are
significant.

6 Exploiting Rewards

6.1 Addressing Desynchronization

In this section, we discuss a particular miscoordination issue that can arise in execution of infinite-
horizon Dec-POMDP policies using an example from the Dec-Tiger domain defined in [7]. In the
Dec-Tiger domain, there are two doors. Behind one door is treasure, but behind the other door is a
tiger. Opening the door concealing the treasure yields a reward, and opening the door concealing the
tiger yields a penalty. The two agents do not know a priori which door the tiger is behind; however,
they are allowed to listen for clues. Upon listening, each agent either hears the tiger behind the left
door or the right door. The observations are noisy, however,and each agent has a fifteen percent
chance of hearing the tiger behind the wrong door. Miscoordination is heavily penalized. If an agent
opens a door and the other agent does not open the same door anyreward received will be halved,
and likewise any penalty received will be doubled.

Figure 1 depicts the execution of a joint policy that we observed in our experiments with UDM-Alt.
In this policy, an agent opens a doorD if it has received at least two observations since the last time
it opened a door (or since it began an episode), and the numberof ”Hear NotD” observations it has
observed is greater than the ”HearD” observations it has observed. In this policy, when an agent
opens a door, it (erroneously) assumes that the other agent has also opened the door. This is similar
to known optimal finite-horizon DecTiger policies; however, in those policies, an agent will only
decide to open a door at specific steps (this is a key distinction which we will revisit shortly). In
Figure 1, the rows correspond to execution steps. The columns labeledt and Tiger report the step
number and location of the tiger, respectively. For a given step t, ai is the action agenti executes
at that step andbi represents the agent’s beliefbeforeexecuting that action. The column labeledωi

reports the observation agenti received after executing the action in the previous step.

We can see from the table that both agents listen for the first two steps. After the first two steps,
agent 2 has heard the tiger twice behind the left door and is therefore 97% certain that the tiger is
behind the left door, so it chooses to open the right door. Agent 1, however, received conflicting
observations and therefore has no idea which door the tiger is behind. At step 4, Agent 1 is unaware
that that Agent 2 has opened a door and therefore it does not know that the observation received
carries no information, nor does it know that the state has been reset. Agent 2 knows both of these
things, and adjusts its belief state accordingly. After this point, the agents become unsynchronized,
and without being able to discern when the other agent has opened a door, it does not seem likely that
they can become synchronized again. As mentioned previously, the optimal finite-horizon policies
for DecTiger avoid this issue because agents only open doorsat the last step for horizons 3-5 and at
the third and last steps for horizon 6.

These synchronization points seem to be the key for solving infinite-horizon DecTiger, and in
fact, PERI [1], the algorithm which produced the policy withthe highest known value (13.45)
for infinite-horizon DecTiger exploited this. PERI assumesthat tasks are periodic, and therefore
can easily create a controller that resets everyX steps as is required in DecTiger. Indeed, we can
show formally that simply looping the optimal horizon-3 DecTiger policy has the same expected
value as was achieved with PERI. The value for the horizon-3 policy when the discount factor is
0.9 is the discounted sum of the expected value at each stepv = −2 · (0.9)0 + −2 · (0.9)1 +
9.190812 · (0.9)2 = 3.6439. Playing this periodic policy repeatedly will yield an expected value of
V = v(0.90)0 + v(0.93)1 + v(0.93)2 + . . .. Since this is an infinite geometric series, we can find
the sum using v

1−.93
= 13.45.

6.2 Incorporating Reward Information

As mentioned previously, if an agent could observe when its counterpart has opened a door, this
desynchronization issue could be avoided. Unfortunately,it is generally assumed that agents are
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unable to observe the actions performed by other agents. In fact, in alternating learning, a learning
agent, having no knowledge of the behavior of the other agent, treats the other agents as part of the
environment. This means that a givenP (s′|s, a) or P (ω|s′, a) an agent has estimated is actually
marginalized over the possible actions of the other agentsA− as follows.

P (s′|s, a) =
∑

a−∈A−

P (s′|s, a, a−)P (a−|s) (7)

P (ω|s′, a) =
∑

a−∈A−

P (ω|a, a−)P (a−|s) (8)

So, this ambiguity can affect not only policy execution as inFigure 1 but also model and policy
learning.

Now, UDM (and consequently our alternating UDM algorithm) relies on the fact that agent(s) re-
ceive a reward upon executing an action (or joint action). Depending upon the domain, a given
rewardr can carry a significant amount of information.

In the DecTiger problem, for instance, agents receive a reward of -2 when they both listen, and
various other rewards if at least one of them opens a door. Therefore, if an agent listens and receives
a reward that is not -2, it can be certain that the other agent opened a door.

Along with disambiguating the other agent’s actions, reward can also carry information about the
previous state. For instance, whenever agents open the correct door in DecTiger, they receive a
positive reward of either 9 if only one agent opened the door while the other listened, or 20 if both
agents opened the door. So, if an agent performs the action ”OpenD” for some doorD and receives
either 9 or 20, it can know with certainty that the previous state was ”NotD”. Of course, since the
state resets upon opening a door, this is of little value for DecTiger policy execution; however, it
could greatly improve the accuracy of theξ(s, s′) (equation 4) used to update the agent’s internal
model. That is, rewards can help the agent learn a better model faster. Furthermore, in other domains
it may be the case that knowing a state with certainty could bebeneficial during execution as well.

An agent can incorporate reward information into its UDM model by conditioning the transition and
observation probabilities onr (i.e.P (s′|s, a, r) andP (ω|s′, a, r)) and by maintaining a new estima-
torP (r|s, a). The resulting changes to the model leads us to the followingmodified representations
of α andβ (originally defined in equations 1 and 2).

α′
t(s

′) = P (ω1, r1 . . . , ωt, rt, st = s′|a1, . . . , at−1)

= zα′

t
· P (ωt|s

′, at−1, rt)
∑

s∈S α′
t−1(s)P (s′|s, at−1, rt)P (rt|s, at−1) (9)

β′
t(s) = P (ωt+1, rt+1, . . . , . . . ωT , rT |st = s, at+1, . . . , aT−1)

= zβ′

t
· P (rt+1|s, at)

∑

s′∈S β′
t+1(s

′)P (ωt+1|s
′, at)P (s′|s, at, rt+1) (10)

Using this new representation ofα andβ, the agent can proceed through trials as before, updating
P (s′|s, a, r) andP (ω|s′, a, r) in a manner similar to 5 and 6 with the modified indicatorsI(at =
a, r = rt+1) andI(at = a,wt+1 = w, rt+1 = r), respectively. The estimatorP (r|s′, a) is updated
using

P (r|s, a) = z ·

T
∑

t=1

∑

s′∈S

I(at = a, r = rt+1)ξ
′
t(s, s

′). (11)

We refer to UDM-Alt with using these modifications as UDM-Alt-R+.

It should be noted that agents using UDM-Alt-R+ will still treat other agents as part of the environ-
ment. In fact,P (s′|s, a, r) andP (ω|s′, a, r) are still marginalized overA− as follows.

P (s′|s, a, r) =
∑

a−∈A−

P (s′|s, a, r, a−)P (r|s, a, a−)P (a−|s, a) (12)

P (ω|s′, a, r) =
∑

a−∈A−

P (ω|a, r, a−)P (r|s, a, a−)P (a−|s, a) (13)

6



324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

However, the extra reward information allows an agent to essentially marginalize over subsets ofA−

instead of the entire set becauseP (r|s, a, a−) can be zero if a certain reward is impossible given the
states in the underlying model represented by local states anda, anda−.

Figure 2 gives an example of a policy discovered by UDM-Alt-R+. Each node is labeled
by an action, and the transition edges are labeled with one ormore vectors having the form
〈reward, observation〉. An asterisk in the place of a reward or observation, denotesthat any sym-
bol can match that element, and−2 represents all rewards other than -2. The policy is executed
as follows. The agent executes the action in the top-most node, and then it receives a reward and
observation. It then follows the transition from that node that matches the reward-observation it
has received. Note that this policy isnot periodic. That is, agents will not automatically reset their
policy execution after X number of steps. Instead, the agents only reset their policy execution when
they receive a reward indicating that a door was open. The periodic policy mentioned previously
essentially forces the agents to discard everything they have learned about the location of the tiger
after three steps. In the policy we present in Figure 2, the agents only discard their belief about the
tiger when they are sure it is no longer valid. Thus, this policy has a slight advantage and achieves
a value of 14.11 (greater than the previously established 13.45), but this is not entirely surprising
considering that this policy assumes that extra information is available (i.e. the reward).

Figure 1: An example of agents becoming unsyn-
chronized. Each row represents a step of execu-
tion,ai represents the action executed at that step,
ωi represents the observation the agenti received
after executingai in the previous step, andbi rep-
resents agenti’s belief prior to executingai.

Figure 2: A policy extracted from UDM-Alt for
DecTiger that incorporates rewards. Nodes are la-
beled with actions and transition edges are labeled
with reward-observation vectors< r, ω >. If the
reward-observation vector received by an agent in
a given node, matches the transition labeling an
edge transitioning from that node, the agent fol-
lows that transition.

6.3 Removing Reliance on Rewards

In some scenarios, it may not be reasonable to assume that reward information is available during
policy execution. Indeed, reward may only exist as a conceptto define the problem and to provide
an evaluation criteria for policies. If this is the case, theUDM-Alt-R+ will not be usable. However,
UDM-Alt requires rewards during the learning phase, and therefore if we can use UDM-Alt for
learning then we have access to rewards during the learning phase. To this end, we have developed a
variant of UDM-Alt that uses rewards during the learning phase but does not require rewards during
policy execution. We accomplish this by simply marginalizing over the rewards when propagating
beliefs during policy execution. In other words, we use UDM-Alt-R+ during model learning, but
we generate our beliefs during policy execution using

bt(s) = α′′
t (s

′) = z ·
∑

r

P (ωt|s
′, at−1, r)

∑

s∈S

α′′
t−1(s)P (s′|s, at−1, r)P (r|s, at−1)

In essence, when an agent marginalizes over rewards, it is making a guess about the reward it re-
ceived based upon prior experience. Unfortunately, such predictions will not give the agent much
insight into the current state; however, it may allow it to model the behaviors of the other agents
more effectively.
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We refer to this variant of UDM-Alt which marginalizes over rewards as UDM-Alt-R−.

7 Experiments

We evaluated our three UDM-Alt variants (UDM-Alt, UDM-Alt-R+, and UDM-Alt-R−) for five
different benchmark problems. For all runs, we initializedπ as per Section 5 using 20 trials having
50 episodes each with each episode consisting of 200 steps. For each benchmark problem, we ran
each variant of UDM-Alt 50 times (with a different random seed each time). For each run, we
allowed the agents to learn for two alternations (i.e. each agent had two turns learning) with each
alternation consisting of 50 trials each having 50 episodeseach with each episode having 500 steps.
The learning rateδ was .005, and we used epsilon-greedy exploration [8] withǫ = .2. This discount
factorγ was .9 for all benchmark problems. For each run, we evaluatedthe quality of the resulting
policy by simulating for 100000 episodes of 150 steps and averaging the reward attained during
those episodes.

Our results are reported in table 1. For each benchmark problem, we report the best known policy
value (which were reported in [11, 1], and the method which attained it. For each of our UDM-Alt
variants, we report the solution quality averaged over 50 runs, and, in parentheses, the error relative
to the best known valueǫr.

Problem(|S|, |Ai|, |Ωi|) Best Known (Method)UDM-Alt-R+ (ǫr) UDM-Alt-R− (ǫr) UDM-Alt (ǫr)
BroadcastChannel(2, 2, 2) 9.10 (NLP) 9.10 (0) 9.10 (0) 9.10 (0)

DecTiger(2, 3, 2) 13.45 (PERI) 13.24 (0.02) -5.77 (1.43) -18.843 (2.4)
Recycling(4, 3, 2) 31.93 (Mealy NLP) 21.90 (.31) 21.91 (0.31) 21.53 (0.33)
2x2 Grid(16, 5, 2) 6.89 (PERI) 3.59 (.49) 3.60 (0.48) 3.80 (.45)

Box Pushing(100, 4, 5) 149.85 (Goal-Dir.) 18.01 (0.88) 8.58 (0.94) -5.03 (1.03)

Table 1: Results Table

From the table we can see that all variants of UDM-Alt performexceptionally well on the Broad-
castChannel problem. This is not surprising, however, because BroadcastChannel is relatively easier
than the other problems. Incorporating rewards was obviously helpful in DecTiger as the relative
error is only .02 for UDM-Alt-R+. While UDM-Alt-R− does not fare as well for DecTiger, it clearly
performs better than UDM-Alt. This suggests that incorporating rewards into the learning process
can be beneficial, even if rewards are not available during policy execution. All three variants per-
form reasonably well on the Recycling Robots; however, incorporating reward appears to have no
effect on the result. Similarly, in the Meeting on a 2x2 Grid problem, reward appears to have no
effect on the result.

All three variants of UDM-Alt show remarkably poor performance on the Box Pushing problem
(though the two variants incorporating reward perform slightly better). Such poor performance is
likely due to the fact that, while agents can coordinate to move large box together for a larger reward,
they have the option of pushing smaller boxes individually for a smaller reward, which can lead to a
local optima. We think resolving this issue may be a good avenue for future work.

8 Conclusion

We have proposed three algorithms for solving infinite-horizon Dec-POMDPs in a distributed man-
ner without knowledge of the model, and we have evaluated thequality of the solutions they produce
on five benchmark problems. We have discussed the danger thatdistributed learners face of becom-
ing unsynchronized during Dec-POMDP policy execution, andhave discussed how incorporating
reward information into our learning algorithm can help agents synchronize policies and can im-
prove the quality of the learned model. We have shown empirically that incorporating rewards into
our models during the learning process can improve the resulting values of policies learned, even if
those policies are not allowed to incorporate rewards.
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